Elemental Uptake by Different Calcite Crystal Faces: An In Situ Study

Author:

Rezaei Mustafa1,Gabitov Rinat1ORCID,Sadekov Aleksey2ORCID,Perez-Huerta Alberto3ORCID,Borrelli Chiara4ORCID,Stiles Andrea1

Affiliation:

1. Department of Geosciences, Mississippi State University, Starkville, MS 39762, USA

2. Department of Engineering and Mathematical Science, The University of Western Australia, Perth, WA 6009, Australia

3. Department of Geological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA

4. Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA

Abstract

This study aims to evaluate relationships between elemental signatures in calcite and the crystallographic orientation of its planes. The ability of calcite (a widespread calcium carbonate mineral) to entrap various trace and minor elements in its structure is the foundation of multiple methods (also called proxies) to reconstruct paleoenvironment conditions (e.g., temperature, pH, and marine chemistry). Although several element-to-calcium ratios (E/Ca) are routinely measured in marine carbonates and are widely used in paleoclimate studies, some of the controls on the incorporation of these elements are still unclear. Here, we examine the effect of crystallography on (E/Ca)calcite by growing thin layers of calcite on differently oriented Iceland Spar substrates immersed in modified seawater solution. Newly grown calcite layers were examined with Laser Ablation Inductivity–Coupled Plasma Mass Spectrometry (LA-ICP-MS), Backscattered Electron Imaging (BSE), and Energy Dispersive X-ray Spectroscopy (EDS). We propose that the crystallographic orientation might slightly influence the incorporation of lithium (Li), sodium (Na), magnesium (Mg), sulfur (S), and barium (Ba) into the studied calcite faces and have no impact on the incorporation of boron (B), potassium (K), and strontium (Sr) at least under the conditions of our experiment.

Funder

Mississippi State University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3