Affiliation:
1. Institute for Space‐Earth Environmental Research Nagoya University Nagoya Japan
2. Graduate School of Environmental Studies Nagoya University Nagoya Japan
Abstract
AbstractThe hygroscopicity of atmospheric aerosols affect the global climate and human health. However, the hygroscopic behavior of mixtures of inorganic salts and organics in atmospheric aerosols have not been well characterized for ambient complex organic mixtures. Here, the hygroscopic growth of humic‐like substances (HULIS), which represent the complexity of organic aerosol compounds, from urban aerosols and their mixtures with ammonium sulfate were investigated with measurements from a hygroscopicity tandem differential mobility analyzer and model analyses. The Zdanovskii–Stokes–Robinson (ZSR) relationship, which assumes that the water uptake of each component is additive, was examined for the mixtures. The dependence of the hygroscopicity parameters (κ) of the mixtures on the volume fraction of HULIS is generally represented by the ZSR relationship with the deviations of κ on average of 16% (4%–27% in different mixing ratios), and 0.03 (0.02–0.04) on absolute basis. An assumption of asphericity for the dry particles reduced the deviations (14%). Approximations for the surface tension depression by surfactants and surface‐bulk partitioning were predicted to account for the deviations to a small extent. Furthermore, a thermodynamic model for simplified compound systems showed that the non‐ideality of the solutions potentially explained the deviations from the ZSR relationship. The results of this study support the use of the ZSR relationship for organic‒inorganic mixtures as a practical approximation in atmospheric models, provide a guide for the uncertainty associated with this approximation, and suggest directions for future studies.
Funder
Japan Society for the Promotion of Science
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献