Disentangling the Role of Forest Structure and Functional Traits in the Thermal Balance of the Mediterranean–Temperate Ecotone

Author:

Barbeta A.1ORCID,Miralles D. G.2ORCID,Mendiola L.34,Gimeno T. E.35,Sabaté S.15,Carnicer J.15

Affiliation:

1. BEECA‐UB Department of Evolutionary Biology, Ecology and Environmental Sciences University of Barcelona Barcelona Spain

2. Hydro‐Climate Extremes Lab (H‐CEL) Ghent University Ghent Belgium

3. Basque Centre for Climate Change (BC3) Leioa Spain

4. Errez Kooperatiba Elkarte Txikia Aramaio Spain

5. CREAF Catalonia Spain

Abstract

AbstractThe thermal balance of forests is the result of complex land–atmosphere interactions. Different climate regimes and plant functional types can have contrasting energy budgets, but little is known about the influence of forest structure and functional traits. Here, we combined spaceborne measurements of surface temperature from ECOSTRESS with ground‐based meteorological data to estimate the thermal balance at the surface (∆Tcan−air) during four summers (2018–2021), at the Mediterranean–temperate ecotone in the NE Iberian Peninsula. We analyzed the spatiotemporal drivers of ∆Tcan−air by quantifying the effects of meteorology, forest structure (stand density, tree height) and ecophysiology (hydraulic traits), during normal days and hot spells. Canopy temperatures (Tcan) fluctuated according to changes in air temperature (Tair) but were on average 4.2 K warmer. During hot spells, ∆Tcan−air was smaller than during normal periods. We attribute this decrease to the advection of hot and dry air masses from the Saharan region resulting in a sudden increase in Tair relative to Tcan. Vapor pressure deficit (VPD) was negatively correlated with ∆Tcan−air, since the highest VPD values coincided with peaks in heat advection. Nonetheless, Tcan increased with VPD due to decreased transpiration (following stomatal closure), even though sufficient soil water availability enabled some degree of evaporative cooling. Our findings demonstrate that plot‐scale forest structural and hydraulic traits are key determinants for the forest thermal balance. The integration of functional traits and forest structure over relevant spatial scales would improve our ability to understand and model land–atmosphere feedbacks in forested regions.

Funder

European Research Council

Generalitat de Catalunya

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3