Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks

Author:

Anderegg William R. L.,Trugman Anna T.ORCID,Bowling David R.,Salvucci Guido,Tuttle Samuel E.

Abstract

The fluxes of energy, water, and carbon from terrestrial ecosystems influence the atmosphere. Land–atmosphere feedbacks can intensify extreme climate events like severe droughts and heatwaves because low soil moisture decreases both evaporation and plant transpiration and increases local temperature. Here, we combine data from a network of temperate and boreal eddy covariance towers, satellite data, plant trait datasets, and a mechanistic vegetation model to diagnose the controls of soil moisture feedbacks to drought. We find that climate and plant functional traits, particularly those related to maximum leaf gas exchange rate and water transport through the plant hydraulic continuum, jointly affect drought intensification. Our results reveal that plant physiological traits directly affect drought intensification and indicate that inclusion of plant hydraulic transport mechanisms in models may be critical for accurately simulating land–atmosphere feedbacks and climate extremes under climate change.

Funder

National Science Foundation

U.S. Department of Agriculture

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference61 articles.

1. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests

2. Investigating soil moisture–climate interactions in a changing climate: A review;Seneviratne;Earth Sci. Rev.,2010

3. A soil moisture–rainfall feedback mechanism: 1. Theory and observations;Eltahir;Water Resour. Res.,1998

4. On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems;D’Odorico;J. Geophys. Res. Biogeosci.,2007

5. Land–atmosphere feedbacks amplify aridity increase over land under global warming

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3