Variation in Leaf Reflectance Spectra Across the California Flora Partitioned by Evolutionary History, Geographic Origin, and Deep Time

Author:

Griffith Daniel M.123ORCID,Byrd Kristin B.2,Taylor Niky2,Allan Elijah4,Bittner Liz5,O'Brien Bart5,Parker V. Thomas6ORCID,Vasey Michael C.6,Pavlick Ryan7,Nemani Ramakrishna R.3ORCID

Affiliation:

1. Department of Earth and Environmental Sciences Wesleyan University Middletown CT USA

2. US Geological Survey Western Geographic Science Center Moffett Field CA USA

3. NASA Ames Research Center Moffett Field CA USA

4. Shonto Chapter Diné (Navajo) Nation Shonto AZ USA

5. Regional Parks Botanic Garden, c/o Tilden Regional Park Berkeley CA USA

6. Department of Biology San Francisco State University San Francisco CA USA

7. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractEvolutionary relatedness underlies patterns of functional diversity in the natural world. Hyperspectral remote sensing has the potential to detect these patterns in plants through inherited patterns of leaf reflectance spectra. We collected leaf reflectance data across the California flora from plants grown in a common garden. Regions of the reflectance spectra vary in the depth and strength of phylogenetic signal. We also show that these differences are much greater than variation due to the geographic origin of the plant. At the phylogenetic extent of the California flora, spectral variation explained by the combination of ecotypic variation (divergent evolution) and convergent evolution of disparate lineages was minimal (3%–7%) but statistically significant. Interestingly, at the extent of a single genus (Arctostaphylos) no unique variation could be attributed to geographic origin. However, up to 18% of the spectral variation among Arctostaphylos individuals was shared between phylogeny and intraspecific variation stemming from ecotypic differences (i.e., geographic origin). Future studies could conduct more structured experiments (e.g., transplants or observations along environmental gradients) to disentangle these sources of variation and include other intraspecific variation (e.g., plasticity). We constrain broad‐scale spectral variability due to ecotypic sources, providing further support for the idea that phylogenetic clusters of species might be detectable through remote sensing. Phylogenetic clusters could represent a valuable dimension of biodiversity monitoring and detection.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3