Evolutionary lineage explains trait variation among 75 coexisting grass species

Author:

Donnelly Ryan C.1ORCID,Wedel Emily R.1ORCID,Taylor Jeffrey H.1ORCID,Nippert Jesse B.1ORCID,Helliker Brent R.2ORCID,Riley William J.3ORCID,Still Christopher J.4ORCID,Griffith Daniel M.45ORCID

Affiliation:

1. Division of Biology Kansas State University Manhattan KS 66506 USA

2. Department of Biology University of Pennsylvania Philadelphia PA 19104 USA

3. Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Forest Ecosystems and Society Oregon State University Corvallis OR 97331 USA

5. Department of Earth and Environmental Sciences Wesleyan University Middletown CT 06459 USA

Abstract

Summary Evolutionary history plays a key role driving patterns of trait variation across plant species. For scaling and modeling purposes, grass species are typically organized into C3 vs C4 plant functional types (PFTs). Plant functional type groupings may obscure important functional differences among species. Rather, grouping grasses by evolutionary lineage may better represent grass functional diversity. We measured 11 structural and physiological traits in situ from 75 grass species within the North American tallgrass prairie. We tested whether traits differed significantly among photosynthetic pathways or lineages (tribe) in annual and perennial grass species. Critically, we found evidence that grass traits varied among lineages, including independent origins of C4 photosynthesis. Using a rigorous model selection approach, tribe was included in the top models for five of nine traits for perennial species. Tribes were separable in a multivariate and phylogenetically controlled analysis of traits, owing to coordination of important structural and ecophysiological characteristics. Our findings suggest grouping grass species by photosynthetic pathway overlooks variation in several functional traits, particularly for C4 species. These results indicate that further assessment of lineage‐based differences at other sites and across other grass species distributions may improve representation of C4 species in trait comparison analyses and modeling investigations.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3