Using InSAR for Surface Deformation Monitoring and Active Layer Thickness Retrieval in the Heihe River Basin on the Northeast Qinghai‐Tibet Plateau

Author:

Peng Sijia12ORCID,Peng Xiaoqing12ORCID,Frauenfeld Oliver W.3,Yang Guangshang12,Tian Weiwei12ORCID,Tian Jie1ORCID,Ma Jinhui1

Affiliation:

1. Key Laboratory of Western China's Environmental Systems (Ministry of Education) College of Earth and Environmental Sciences Observation and Research Station on Eco‐Environment of Frozen Ground in the Qilian Mountains Lanzhou University Lanzhou China

2. Observation and Research Station on Eco‐Environment of Frozen Ground in the Qilian Mountains Lanzhou University Lanzhou China

3. Department of Geography Texas A&M University College Station TX USA

Abstract

AbstractIn cold regions characterized by perennially frozen soil, climate warming has caused permafrost degradation, which is manifested by surface deformation and deepening of the active layer. Interferometric synthetic aperture radar (InSAR) is a common method to obtain large‐scale surface deformation, especially in mountainous terrain where it is difficult to install a large number of monitoring sites. Here, we used Sentinel‐1A SAR data acquired from March 2017 to March 2021 to monitor surface deformation and estimate active layer thickness (ALT) using two methods—temperature‐based and soil moisture‐based—in the permafrost regions of the Heihe River Basin on the northeast Qinghai‐Tibetan Plateau. We find that the seasonal deformation amplitude ranges 10–60 mm, and the annual mean vertical deformation trend ranges from −40 to 30 mm/a. We verify the ALT estimates with observations and find that the method based on soil moisture has higher accuracy and is therefore more applicable in this particular study area. The ALT gradually decreases from the southeast to the northwest, ranging from 0.3 to 6.5 m, with an average value of 2.47 m. These results contribute to better quantifying the response of permafrost change and to understanding the spatial distribution of ALT on a large scale, serving as guidance for engineering and other applications.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3