Affiliation:
1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Abstract
The Heihe River Basin (HRB), located on the northeast margin of the Qilian Mountains, is China’s second largest inland river basin. It is a typical oasis-type agricultural area in northwest China’s arid and semiarid areas. It is important to monitor and investigate the spatiotemporal distribution characteristics and mechanisms of surface deformation in HRB for the ecology of inland river basins. In recent years, research on HRB has mainly focused on hydrology, meteorology, geology, or biology. Few studies have conducted wide-area monitoring and mechanism analysis of the surface stability of HRB. In this study, an improved interferometric point target analysis InSAR (IPTA-InSAR) technique is used to process 101 Sentinel-1 SAR images from two adjacent track frames covering the HRB from 2019 to 2020. The wide-area deformation of the HRB is obtained first for this period. The results show that most of the surface around the HRB is relatively stable. There are six areas with an extensive deformation range and magnitude in the plain oasis area. The maximum deformation rate is more than 50 mm/year. The maximum seasonal subsidence and uplift along the satellites’ line-of-sight (LOS) direction can be up to −70 mm and 60 mm, respectively. Moreover, we use the Google Earth Engine platform to process the multisource optical images and analyze the deformation areas. The remote sensing indicators of the deformation areas, such as the normalized difference vegetation index (NDVI), soil moisture (SMMI), and precipitation, are obtained during the InSAR monitoring period. We combine these integrated remote sensing results with soil type and precipitation to analyze the surface deformations of the HRB. The spatiotemporal relationships between soil moisture, vegetation cover, and surface deformation of the HRB are revealed. The results will provide data support and reference for the healthy and sustainable development of the inland river basin economic zone.
Funder
China University of Geosciences (Beijing) University Student Innovation and Entrepreneurship Training Program
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China