Refined Earthquake Focal Mechanism Catalog for Southern California Derived With Deep Learning Algorithms

Author:

Cheng Yifang12ORCID,Hauksson Egill3ORCID,Ben‐Zion Yehuda14ORCID

Affiliation:

1. Department of Earth Sciences University of Southern California CA Los Angeles USA

2. Department of Earth and Planetary Science University of California Berkeley Berkeley CA USA

3. Seismological Laboratory California Institute of Technology Pasadena CA USA

4. Southern California Earthquake Center University of Southern California CA Los Angeles USA

Abstract

AbstractEarthquake focal mechanisms, determined with P‐wave polarities and S/P amplitude ratios, are primary data for analyzing fault zone geometry, sense of slip, and the crustal stress field. Solving for the focal mechanisms of small earthquakes is often challenging because phase arrivals and first‐motion polarities are hard to be separated from noise. To overcome this challenge, we implement convolutional‐neural‐network algorithms (Ross, Meier, & Hauksson, 2018, Ross, Meier, Hauksson, & Heaton, 2018, https://doi.org/10.1029/2017jb015251, https://doi.org/10.1785/0120180080) to detect additional phases and polarities. Using both existing and these new data, we build a high‐quality focal mechanism catalog of 297,478 events that occurred from 1981 to 2021 in southern California with the HASH method of Hardebeck and Shearer (2002), https://doi.org/10.1785/0120010200, Hardebeck and Shearer (2003), https://doi.org/10.1785/0120020236. The new focal mechanism catalog is overall consistent with the standard catalog (Yang et al., 2012, https://doi.org/10.1785/0120110311) but includes 40% more focal mechanisms, and is more consistent with moment tensor solutions derived using waveform‐fitting methods. We apply the new catalog to identify changes in focal mechanism properties caused by the occurrences of large mainshocks such as the 2010 Mw7.2 El Mayor‐Cucapah and 2019 Mw7.1 Ridgecrest earthquakes. Such changes may be associated with co‐seismic stress drops, post‐seismic deformation processes, and static stress changes on a regional scale. The new high‐resolution catalog will contribute to improved understanding of the crustal stress field, earthquake triggering mechanisms, fault zone geometry, and sense of slip on the faults in southern California.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3