Multi‐Scale Seismic Imaging of the Ridgecrest, CA, Region With Waveform Inversion of Regional and Dense Array Data

Author:

Li Guoliang12ORCID,Ben‐Zion Yehuda1ORCID

Affiliation:

1. Department of Earth Sciences Statewide California Earthquake Center University of Southern California Los Angeles CA USA

2. School of Geosciences and Info‐Physics Central South University Changsha China

Abstract

AbstractWe develop an inversion procedure for deriving multi‐scale velocity models with waveform inversions of earthquake and ambient noise data at multi‐frequency bands recorded by regional and dense sensor configurations. The method is applied for the area around the 2019 Ridgecrest earthquake rupture zones, utilizing data recorded by regional stations and dense 2D and 1D arrays with station spacings of ∼5 km and ∼100 m, respectively. Starting with regional Vp, Vs models and locations of Ridgecrest aftershocks, the velocity models and event locations are improved iteratively by inversions of waveforms recorded by regional stations and the 2D array, using a minimum spectral element size of ∼600 m. Waveforms from local events recorded by dense 1D arrays across the M7.1 rupture zone with frequencies of up to 10 Hz are used to resolve small‐scale features of the rupture zone and shallow crust with a local spectral element size of 80 m. The refined models provide self‐consistent descriptions of the rupture zone and the shallow crust embedded in the regional structures. The results reveal pronounced low Vs and high Vp/Vs in the M6.4 and M7.1 rupture zones coinciding with concentrations of seismicity, and also around the Garlock fault and in several local basins. We also observe clear velocity contrasts across the Garlock fault with polarity reversals along strike and with depth. The obtained multi‐scale velocity models can be used to improve derivations of earthquake source properties, simulations of dynamic ruptures and ground motions, and the understanding of fault and tectonic processes in the region.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3