A Global Comparison of Marine Chlorophyll Variability Observed in Eulerian and Lagrangian Perspectives

Author:

Kuhn Angela M.1ORCID,Mazloff Matthew1ORCID,Dutkiewicz Stephanie2ORCID,Jahn Oliver2ORCID,Clayton Sophie3ORCID,Rynearson Tatiana4,Barton Andrew D.15

Affiliation:

1. Scripps Institution of Oceanography University of California, San Diego San Diego CA USA

2. Massachusetts Institute of Technology Cambridge MA USA

3. Old Dominion University Norfolk VA USA

4. University of Rhode Island Kingston RI USA

5. Department of Ecology, Behavior and Evolution University of California, San Diego San Diego CA USA

Abstract

AbstractOcean chlorophyll time series exhibit temporal variability on a range of timescales due to environmental change, ecological interactions, dispersal, and other factors. The differences in chlorophyll temporal variability observed at stationary locations (Eulerian perspective) or following water parcels (Lagrangian perspective) are poorly understood. Here we contrasted the temporal variability of ocean chlorophyll in these two observational perspectives, using global drifter trajectories and satellite chlorophyll to generate matched pairs of Eulerian‐Lagrangian time series. We found that for most ocean locations, chlorophyll variances measured in Eulerian and Lagrangian perspectives are not statistically different. In high latitude areas, the two perspectives may capture similar variability due to the large spatial scale of chlorophyll patches. In localized regions of the ocean, however, chlorophyll variability measured in these two perspectives may significantly differ. For example, in some western boundary currents, temporal chlorophyll variability in the Lagrangian perspective was greater than in the Eulerian perspective. In these cases, the observing platform travels rapidly across strong environmental gradients and constrained by the shelf topography, potentially leading to greater Lagrangian variability in chlorophyll. In contrast, we found that Eulerian chlorophyll variability exceeded Lagrangian variability in some key upwelling zones and boundary current extensions. In these cases, variability in the nutrient supply may generate intermittent chlorophyll anomalies in the Eulerian perspective, while the Lagrangian perspective sees the transport of such anomalies off‐shore. These findings aid with the interpretation of chlorophyll time series from different sampling methodologies, inform observational network design, and guide validation of marine ecosystem models.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3