Evaluation of Vertical Patterns in Chlorophyll‐A Derived From a Data Assimilating Model of Satellite‐Based Ocean Color

Author:

Arteaga Lionel A.12ORCID,Rousseaux Cecile S.3ORCID

Affiliation:

1. Global Modeling and Assimilation Office NASA Goddard Space Flight Center Greenbelt MD USA

2. Goddard Earth Sciences Technology and Research II University of Maryland Baltimore County Baltimore MD USA

3. Ocean Ecology Laboratory NASA Goddard Space Flight Center Greenbelt MD USA

Abstract

AbstractSatellite‐based sensors of ocean color have become the primary tool to infer changes in surface chlorophyll, while BGC‐Argo floats are now filling the information gap at depth. Here we use BGC‐Argo data to assess depth‐resolved information on chlorophyll‐a derived from an ocean biogeochemical model constrained by the assimilation of surface ocean color remote sensing. The data‐assimilating model replicates well the general seasonality and meridional gradients in surface and depth‐resolved chlorophyll‐a inferred from the float array in the Southern Ocean. On average, the model tends to overestimate float‐based chlorophyll, particularly at times and locations of high productivity such as the beginning of the spring bloom, subtropical deep chlorophyll maxima, and non‐iron limited regions of the Southern Ocean. The highest model RMSE in the upper 50 m with respect to the float array is of 0.6 mg Chl m−3, which should allow the detection of seasonal changes in float‐based biomass (varying between 0.01 and >1 mg Chl m−3) but might hinder the identification of subtle changes in chlorophyll at narrow local scales. Both model and float profiling data show good agreement with in situ data from station ALOHA, with model estimates showing a slight accuracy edge in inferring depth‐resolved observations. Uncertainties in float bio‐optical estimates impede their use as a reliable benchmark for validation, but the general qualitative agreement between model and float data provides confidence in the ability of model to replicate biogeochemical features below the surface, where data is not directly constrained by the assimilation of satellite ocean color.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3