Dynamic Structure of Eddies of the Brazil‐Malvinas Confluence Zone Revealed by Direct Measurements and Satellite Altimetry

Author:

Frey D. I.12ORCID,Kubryakov A. A.2ORCID

Affiliation:

1. Shirshov Institute of Oceanology Russian Academy of Sciences Moscow Russia

2. Marine Hydrophysical Institute Russian Academy of Sciences Sevastopol Russia

Abstract

AbstractThe goal of this work is to study the dynamical structure of eddies of the Brazil‐Malvinas Confluence zone (BMC eddies) using direct velocity measurements carried out by Shipborne Acoustic Doppler Current Profiler during five oceanographic cruises performed in 2016–2022. In total, in situ data of 13 BMC eddies, including nine anticyclones and four cyclones are available. These data show that the orbital velocity in such eddies can reach 189 cm/s and their vertical structure is highly barotropic. In several eddies, the velocities exceeding 100 cm/s are observed down to a depth of 560 m and at a depth of 800 m they are still higher than 80 cm/s. The spatial structure of velocity and horizontal shear in the eddies is strongly asymmetric, with higher velocities in the southern part near the intense thermohaline BMC front. Altimetry data show qualitative agreement with in situ data, but underestimate the horizontal velocity shear and the maximum velocities at the periphery of the BMC eddies. We also use satellite altimetry and Argo float measurements to study these eddies, and estimate their impact on the thermohaline structure. The analysis shows that the eddies with orbital velocities exceeding 100 cm/s cause intense temperature and salinity anomalies reaching 7–9°C and 1 psu in anticyclones and −4°C and 0.8 psu in cyclones at 100–300 m depth.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3