3D Evolution of Detachment Fault Systems in Necking Domains: Insights From the Klakk Fault Complex and the Frøya High, Mid‐Norwegian Rifted Margin

Author:

Gresseth J. L. S.1ORCID,Osmundsen P. T.12ORCID,Péron‐Pinvidic G.13ORCID

Affiliation:

1. Department of Geoscience and Petroleum Norwegian University of Science and Technology Trondheim Norway

2. Department of Arctic Geology University Centre in Svalbard Longyearbyen Norway

3. Geological Survey of Norway Trondheim Norway

Abstract

AbstractDetachment fault systems typically record displacements in the order of 10s of kilometers. The principles that control the growth of smaller magnitude normal faults are not fully applicable to the evolution of detachment fault systems. We use interpretation of 2D and 3D seismic reflection data from the mid‐Norwegian rifted margin to investigate how the structural evolution of a detachment fault interacted with the effects of isostatic footwall rollback to produce complex 3D geometries and control the configuration of associated supradetachment basins. We further investigate the effects of lateral interaction and linkage of extensional detachment faults on the necking domain configuration. In our study area, the domain‐bounding Klakk Fault Complex demonstrates how successive incision may induce a complex structural relief in response to faulting and fault plane folding. We interpret the previously proposed metamorphic core complex within its footwall as an extension‐parallel turtleback‐structure. The now eroded turtleback is flanked by a major supradetachment basin, connecting two main basin segments. We attribute footwall‐ and turtleback exhumation to Middle Jurassic‐Early Cretaceous rifting. The study area further demonstrates how detachment fault geometries can change during rifting and lead to the formation of younger, successively incising fault splays. Lateral linkage between the original detachment fault plane and these fault splays enables displacement along a detachment fault system consisting of fault segments generated at different stages in time. Implicitly, detachment faults are complex 3D systems that change configuration during their evolution, perpetually controlling associated basin formation, footwall configuration, subsidence and uplift patterns.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3