Footwall geomorphology during necking domain evolution: A new model for the Frøya High, mid‐Norwegian rifted margin

Author:

Gresseth Julie Linnéa Sehested1ORCID,Osmundsen Per Terje12,Péron‐Pinvidic Gwenn13

Affiliation:

1. Department of Geoscience and Petroleum NTNU Trondheim Norway

2. Department of Arctic Geology University Centre in Svalbard (UNIS) Longyearbyen Norway

3. Geological Survey of Norway Trondheim Norway

Abstract

AbstractObservations and modelling results from highly extended regions indicate that detachment fault systems recording displacements of 10 km or more become associated with footwall uplift and back‐rotation. This is commonly explained by the rolling hinge model, which predicts detachment fault back‐rotation and severe dip reduction (<20°) controlled by the amount of extension. Although detachment faults within necking domains at rifted margins often record displacements in orders consistent with those for the rolling hinge model, it is rarely invoked to explain the associated footwall configurations. Our study area encircles the necking domain of the mid‐Norwegian rifted margin, where the Middle Jurassic–Early Cretaceous Klakk Fault Complex (KFC) directly separates the Frøya High from the Rås Basin. The Frøya High represents the eroded footwall of the KFC detachment fault system which records displacements of 20–40 km. Seismic mapping and well correlation across the Frøya High reveal how three erosional unconformities correspond to three laterally extensive top basement segments which follow the strike of the sinuous KFC. The segments differ in terms of dip, basement geomorphology and the composition and age of the sediments that rest unconformably on the top of basement. We attribute the associated cross‐cutting basement unconformities across the Frøya High to footwall uplift and back‐rotation during fluctuating relative sea‐level and repeated subaerial exposure during Middle Jurassic–Early Cretaceous times. We herein introduce a revised tectono‐sedimentary model for the evolution of the Frøya High, with significant implications for sediment (re‐)routing across the high during rifting. The model indicates that spatio‐temporal sediment distribution was ultimately controlled by the process of necking and evolution of the KFC. Our findings indicate a rolling hinge‐type evolution for the KFC and further suggest that the associated mechanisms may be more common in the necking domains of rifted margins than previously assumed.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3