Author:
Chien-Hsiang Wu Chien-Hsiang Wu,Chien-Hsiang Wu Chin-Feng Lai
Abstract
<p>With the popularity of wireless application environments, smart antenna technology has completely changed the communication system. In order to improve the quality of wireless transmission, smart antennas have been widely used in wireless devices. Wireless signal modeling and prediction machine learning gradually replaced the traditional smart antenna selection method in the antenna selection solution. This article utilizes mobile devices to adjust the diversity antenna pattern for test verification in a MIMO wireless communication environment. The proposed method manipulates signal parameters through error vector magnitude (EVM) and adds data-driven training data. The results show that the SVM and NN methods proposed in this paper are 10.5% and 14% higher than the traditional EVM calculation methods, respectively. Thereby, realize precise antenna adjustment of mobile devices and improving wireless transmission quality.</p>
<p> </p>
Publisher
Angle Publishing Co., Ltd.
Subject
Computer Networks and Communications,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献