Data-driven Diversity Antenna Selection for MIMO Communication using Machine Learning

Author:

Chien-Hsiang Wu Chien-Hsiang Wu,Chien-Hsiang Wu Chin-Feng Lai

Abstract

<p>With the popularity of wireless application environments, smart antenna technology has completely changed the communication system. In order to improve the quality of wireless transmission, smart antennas have been widely used in wireless devices. Wireless signal modeling and prediction machine learning gradually replaced the traditional smart antenna selection method in the antenna selection solution. This article utilizes mobile devices to adjust the diversity antenna pattern for test verification in a MIMO wireless communication environment. The proposed method manipulates signal parameters through error vector magnitude (EVM) and adds data-driven training data. The results show that the SVM and NN methods proposed in this paper are 10.5% and 14% higher than the traditional EVM calculation methods, respectively. Thereby, realize precise antenna adjustment of mobile devices and improving wireless transmission quality.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3