Optimal distribution grid allocation of reactive power with a focus on the particle swarm optimization technique and voltage stability

Author:

Candra Oriza,Alghamdi Mohammed I.,Hammid Ali Thaeer,Alvarez José Ricardo Nuñez,Staroverova Olga V.,Hussien Alawadi Ahmed,Marhoon Haydar Abdulameer,Shafieezadeh M. Mehdi

Abstract

AbstractA structured approach to managing reactive power is imperative within the context of power systems. Among the restructuring initiatives in the electrical sector, power systems have undergone delineation into three principal categories: generation, transmission, and distribution entities, each of which is overseen by an independent system operator. Notably, active power emerges as the predominant commodity transacted within the electrical market, with the autonomous grid operator assuming the responsibility of ensuring conducive conditions for the execution of energy contracts across the transmission infrastructure. Ancillary services, comprising essential frameworks for energy generation and delivery to end-users, encompass reactive power services pivotal in the regulation of bus voltage. Of particular significance among the array of ancillary services requisite in a competitive market milieu is the provision of adequate reactive power to uphold grid safety and voltage stability. A salient impediment to the realization of energy contracts lies in the inadequacy of reactive power within the grid, which poses potential risks to its operational safety and voltage equilibrium. The optimal allocation of the reactive power load is predicated upon presumptions of consistent outcomes within the active power market. Under this conceptual framework, generators are afforded continual compensation for the provision of reactive power indispensable for sustaining their active energy production endeavors.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3