3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2

Author:

Huang HaohangORCID, ,Tutumluer ErolORCID,Luo Jiayi,Ding Kelin,Qamhia IssamORCID,Hart John, , , , ,

Abstract

Riprap rock and aggregates are extensively used in structural, transportation, geotechnical, and hydraulic engineering applications. Field determination of morphological properties of aggregates such as size and shape can greatly facilitate the quality assurance/quality control (QA/QC) process for proper aggregate material selection and engineering use. Many aggregate imaging approaches have been developed to characterize the size and morphology of individual aggregates by computer vision. However, 3D field characterization of aggregate particle morphology is challenging both during the quarry production process and at construction sites, particularly for aggregates in stockpile form. This research study presents a 3D reconstruction-segmentation-completion approach based on deep learning techniques by combining three developed research components: field 3D reconstruction procedures, 3D stockpile instance segmentation, and 3D shape completion. The approach was designed to reconstruct aggregate stockpiles from multi-view images, segment the stockpile into individual instances, and predict the unseen side of each instance (particle) based on the partial visible shapes. Based on the dataset constructed from individual aggregate models, a state-of-the-art 3D instance segmentation network and a 3D shape completion network were implemented and trained, respectively. The application of the integrated approach was demonstrated on re-engineered stockpiles and field stockpiles. The validation of results using ground-truth measurements showed satisfactory algorithm performance in capturing and predicting the unseen sides of aggregates. The algorithms are integrated into a software application with a user-friendly graphical user interface. Based on the findings of this study, this stockpile aggregate analysis approach is envisioned to provide efficient field evaluation of aggregate stockpiles by offering convenient and reliable solutions for on-site QA/QC tasks of riprap rock and aggregate stockpiles.

Publisher

Illinois Center for Transportation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3