Statewide Implementation of Salt Stockpile Inventory Using LiDAR Measurements: Case Study

Author:

Mahlberg Justin Anthony1ORCID,Malackowski Haydn1,Joseph Mina1,Koshan Yerassyl1,Manish Raja1ORCID,DeLoach Zach2,Habib Ayman1ORCID,Bullock Darcy M.1ORCID

Affiliation:

1. Joint Transportation Research Program, Purdue University, West Lafayette, IN 47907, USA

2. Indiana Department of Transportation, 100 N Senate Ave, Marion County, Indianapolis, IN 46204, USA

Abstract

The state of Indiana maintains approximately 120 salt storage facilities strategically distributed across the state for winter operations. In April 2023, those facilities contained approximately 217,000 tons of salt with an estimated value of USD 21 million. Accurate inventories at each facility during the winter season are important for scheduling re-supply so the facilities do not run out of salt. Inventories are also important at the end of the season for restocking to provide balanced inventories. This paper describes the implementation of a portable pole-mounted LiDAR system to measure salt stockpile inventory at 120 salt storage facilities in Indiana. Using two INDOT staff members, the end-of-season inventory took 9 working days, with volumetric inventories provided within 24 h of data collection. To provide an independent evaluation of the methodologies, the Hovermap ST backpack was used at selected facilities to provide control volumes. This system has a range of 100 m and an accuracy of ±3 cm, which reduces the occlusion to less than 8%. The pre-season facility capacity ranged from 0% to 100%, with an average of 66% full across all facilities. The post-season facility percentage ranged from 3% to 100%, with an average of 70% full. In addition, permanent roof-mounted LiDAR systems were deployed at two facilities to evaluate the effectiveness of monitoring salt stockpile inventories during winter operation activities. Plans are now underway to install fixed LiDAR systems at 15 additional facilities for the 2023–2024 winter season.

Funder

Joint Transportation Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3