Optimization and Characterization of Biochar Obtained from the Weedy Biomass of Calotropis gigantea Using Vacuum Pyrolysis

Author:

Poonia Poonam1ORCID,Gaur Loveena1ORCID

Affiliation:

1. 1 Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan India

Abstract

The excessive growth of invasive weeds causes adverse economic and environmental effects. In the present study, invasive weed Calotropis gigantea was pyrolyzed under optimized parameters of 450° and 50-100 mm particle size for 1.00 hour of reaction time for biochar production. The biochar was characterized by the presence of a high carbon content of 64.65% and low H/C and O/C molar ratios of 0.08 and 0.15, respectively. The biochar was observed with high surface area of 99.91m2/g and pore volume of 0.0398cm3/g along with mineral fractions such as K-1.33%, Na-1.17%, Mg-1.05%. Strong FTIR bands were observed at 1994.1 cm-1, 1110 cm-1, and 745 cm-1, representing allenes (R 2C=C=CR 2), aryl alkyl ethers (R – O – R), and aromatic (C–H) bending. All these parameters indicate its potential in the applications such as carbon sequestration, climate change mitigation, environment pollutants adsorption (both organic and inorganic), and soil improvement.

Publisher

Enviro Research Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3