Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use

Author:

Venkatesh Govindarajan,Gopinath Kodigal A.,Reddy Kotha Sammi,Reddy Baddigam Sanjeeva,Prabhakar Mathyam,Srinivasarao CherukumalliORCID,Visha Kumari VenugopalanORCID,Singh Vinod Kumar

Abstract

The crop residues generated in agricultural fields are mostly considered a burden due to their disposal issues. This study attempts to effectively use pigeon pea stalk (PPS) for biochar production, a promising source as a soil amendment for carbon sequestration and alternative fuel source. PPS was pyrolyzed at different loads and reaction times to optimize the kiln temperature (350–400 °C and 450–500 °C) and changes in physicochemical properties, higher heating value (HHV) and yield were assessed. The results indicated that biochar yield, volatile matter, bulk density, O/C and H/C atomic ratios decreased, whereas fixed carbon, ash content and total porosity increased with increasing kiln temperature across all loads. Biochar produced at 450–500 °C (18 kg load kiln−1) had higher total carbon, nitrogen, phosphorous, recovered total carbon and total nitrogen, total potential carbon and CO2 reduction potential. Biochar produced at 350–400 °C had the maximum cation exchange capability (43.0 cmol kg−1). Biochar has estimated O/C and H/C atomic ratios of 0.07–0.15 and 0.35–0.50, respectively. Biochar exhibited good agronomic characteristics and fulfilled key quality criteria of H/C < 0.7 and O/C < 0.4 for soil carbon sequestration, as described by the European Biochar Certificate and the International Biochar Initiative. The estimated mean residence time and the mass fraction of carbon that would remain after 100 years were consistently greater than 1000 years and 80%, respectively. The biochar produced at 450–500 °C (at 18.0 kg kiln−1) from PPS had higher fixed carbon (65.3%), energy density (1.51), energetic retention efficiency (53%), fuel ratio (4.88), and HHV (25.01 MJ kg−1), as well as lower H/C and O/C ratios, implying that it is suitable for use as an alternative solid fuel.

Funder

INDIAN COUNCIL OF AGRICULTURAL RESEARCH

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3