Characterization of Genetically Engineered Linamarase (β-glucosidase) from Saccharomyces cerevisiae

Author:

harIkya Julius1,Charles Charles1,Ayatse James2

Affiliation:

1. Department of Food Science and Technology, University of Agriculture, Makurdi, Nigeria

2. Federal University Dutsin-Ma, Katsina State, Nigeria.

Abstract

The characterization parameters of genetically engineered linamarase (β-glucosidase) from Saccharomyces cerevisiae due to action of the enzyme on linamarin as influenced by degree of purification, pH and temperature were investigated. Commercial native linamarase (CNLIN) was used as control. Linamarase genes (chromosomal DNA) and plasmids (circular DNA) isolated from bitter cassava and yeast respectively were restricted and ligated to produce recombinant genes (r-DNA). The r-DNA were introduced into the nucleus of CaCl2 induced competent Saccharomyces cerevisiae cells which transformed into strains capable of producing genetically engineered linamarase (GELIN). Recombinant S. cerevisiae cells at the stationary phase of growth were recovered, homogenized and centrifuged to obtain crude extracts designated as GELIN0. Carboxy methyl cellulose, diethyl amino-ethyl-sephadex and diethyl amino-ethyl-cellulose were used to purify the crude extracts resulting in GELIN1, GELIN2 and GELIN3, respectively. The physical characterization parameters of the enzyme extracts such as impurity levels, molecular weights (Mwt), number of isoenzyme, sulphur amino acids (methionine and cysteine) and the electrical charges were evaluated using standard methods. The ability of the enzyme extracts and a commercial native linamarase (CNLIN) to hydrolyse cyanogenic glucosides was challenged using linamarin (cassava) as substrates for characterization of activity kinetic profiles such as optimum pH (pHopt), temperature (Topt), total activity, specific activity, purity fold, yield and efficiency ratio. The results indicated that the genetically engineered linamarase(β-glucosidase) consisted of 3 isoenzyme forms. Purification conferred different ionic charges of zero to GELIN0, unit positive charge GELIN1, and unit negative charge to GELIN2 and GELIN3 respectively. Ranges for other parameters were Mwt (22,000-26,000 Daltons), insoluble protein impurity (0.4 -3.5 mg/100g sample) and purity fold (11.5 -1.0) for GELIN3 - GELIN0). Methionine and cystiene varied from 2.0 to 2.6% and 3.0 to 20% respectively (CNLIN - GELIN3). The native commercial enzyme (CNLIN) acted only at pH 6.8 on linamarin with pHopt and Topt of 6.8 and 35 oC respectively. The wide pH tolerance and specific activity towards linamarin degradation suggest a possible use of the genetically engineered linamarase from S. cerevisiae in detoxification of cassava for increased production exportation of cassava-based food products.

Publisher

Enviro Research Publishers

Subject

Medicine (miscellaneous),Food Science

Reference25 articles.

1. Acher D. B. and Peberdy J. F. The molecular biology of secreted enzyme production by fungi. Crit. Rev Biotechnol., 17:273–306 (2006).

2. CrossRef

3. Ikediobi C.O. and Ogundu E.C. Screening of some fungal isolate for linamarase production. NIFOJ Vol 3(1,2 and 3):165-167(1985)

4. Ikediobi C.O. and Onyike E. The use of linamarase in garri production. Process Biochem. 17: 2-5(2002)

5. Kramer A and Twigg B. A.(1970) Quality Control for the Food Industry. 3rd.Edition. Westport, Connecticut. The Avi Publishing Company Inc.pp.155-205 (1970)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3