Food web rewiring in a changing world

Author:

Bartley Timothy J12ORCID,McCann Kevin S2,Bieg Carling2,Cazelles Kévin2ORCID,Granados Monica23ORCID,Guzzo Matthew M2,MacDougall Andrew S2,Tunney Tyler D45,McMeans Bailey C1

Affiliation:

1. Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada

2. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada

3. Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada

4. Gulf Fisheries Centre, Fisheries and Oceans Canada, Moncton, New Brunswick, Canada

5. Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

Abstract

Climate change is asymmetrically altering environmental conditions in space, from local to global scales, creating novel heterogeneity. Here, we argue that this novel heterogeneity will drive mobile generalist consumer species to rapidly respond through their behavior in ways that broadly and predictably reorganize—or rewire—food webs. We use existing theory and data from diverse ecosystems to show that the rapid behavioral responses of generalists to climate change rewire food webs in two distinct and critical ways. Firstly, mobile generalist species are redistributing into systems where they were previously absent and foraging on new prey, resulting in topological rewiring—a change in the patterning of food webs due to the addition or loss of connections. Secondly, mobile generalist species, which navigate between habitats and ecosystems to forage, will shift their relative use of differentially altered habitats and ecosystems, causing interaction strength rewiring—changes that reroute energy and carbon flows through existing food web connections and alter the food web’s interaction strengths. We then show that many species with shared traits can exhibit unified aggregate behavioral responses to climate change, which may allow us to understand the rewiring of whole food webs. We end by arguing that generalists’ responses present a powerful and underutilized approach to understand and predict the consequences of climate change and may serve as much-needed early warning signals for monitoring the looming impacts of global climate change on entire ecosystems.

Publisher

PeerJ

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3