Extracellular pH Responses in CA1 and the Dentate Gyrus During Electrical Stimulation, Seizure Discharges, and Spreading Depression

Author:

Xiong Zhi-Qi1,Stringer Janet L.1

Affiliation:

1. Department of Pharmacology and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030

Abstract

Since neuronal excitability is sensitive to changes in extracellular pH and there is regional diversity in the changes in extracellular pH during neuronal activity, we examined the activity-dependent extracellular pH changes in the CA1 region and the dentate gyrus. In vivo, in the CA1 region, recurrent epileptiform activity induced by stimulus trains, bicuculline, and kainic acid resulted in biphasic pH shifts, consisting of an initial extracellular alkalinization followed by a slower acidification. In vitro, stimulus trains also evoked biphasic pH shifts in the CA1 region. However, in CA1, seizure activity in vitro induced in the absence of synaptic transmission, by perfusing with 0 Ca2+/5 mM K+medium, was only associated with extracellular acidification. In the dentate gyrus in vivo, seizure activity induced by stimulation to the angular bundle or by injection of either bicuculline or kainic acid was only associated with extracellular acidification. In vitro, stimulus trains evoked only acidification. In the dentate gyrus in vitro, recurrent epileptiform activity induced in the absence of synaptic transmission by perfusion with 0 Ca2+/8 mM K+medium was associated with extracellular acidification. To test whether glial cell depolarization plays a role in the regulation of the extracellular pH, slices were perfused with 1 mM barium. Barium increased the amplitude of the initial alkalinization in CA1 and caused the appearance of alkalinization in the dentate gyrus. In both CA1 and the dentate gyrus in vitro, spreading depression was associated with biphasic pH shifts. These results demonstrate that activity-dependent extracellular pH shifts differ between CA1 and dentate gyrus both in vivo and in vitro. The differences in pH fluctuations with neuronal activity might be a marker for the basis of the regional differences in seizure susceptibility between CA1 and the dentate gyrus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3