Ryanodine-Sensitive Stores Regulate the Excitability of AH Neurons in the Myenteric Plexus of Guinea-Pig Ileum

Author:

Hillsley K.1,Kenyon J. L.1,Smith T. K.1

Affiliation:

1. Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046

Abstract

Myenteric afterhyperpolarizing (AH) neurons are primary afferent neurons within the gastrointestinal tract. Stimulation of the intestinal mucosa evokes action potentials (AP) that are followed by a slow afterhyperpolarization (AHPslow) in the soma. The role of intracellular Ca2+ ([Ca2+]i) and ryanodine-sensitive Ca2+ stores in modulating the electrical activity of myenteric AH neurons was investigated by recording membrane potential and bis-fura-2 fluorescence from 34 AH neurons. Mean resting [Ca2+]i was ∼200 nM. Depolarizing current pulses that elicited APs evoked AHPslow and an increase in [Ca2+]i, with similar time courses. The amplitudes and durations of AHPslow and the Ca2+ transient were proportional to the number of evoked APs, with each AP increasing [Ca2+]i by ∼50 nM. Ryanodine (10 μM) significantly reduced both the amplitude and duration (by 60%) of the evoked Ca2+ transient and AHPslow over the range of APs tested (1–15). Calcium-induced calcium release (CICR) was graded and proportional to the number of APs, with each AP triggering a rise in [Ca2+]i of ∼30 nM Ca2+ via CICR. This indicates that CICR amplifies Ca2+ influx. Similar changes in [Ca2+]i and AHPslow were evoked by two APs in control and six APs in ryanodine. Thus, the magnitude of the change in bulk [Ca2+]i and not the source of the Ca2+ is the determinant of the magnitude of AHPslow. Furthermore, lowering of free [Ca2+]i, either by reducing extracellular Ca2+ or injecting high concentrations of Ca2+buffer, induced depolarization, increased excitability, and abolition of AHPslow. In addition, activation of synaptic input to AH neurons elicited a slow excitatory postsynaptic potential (sEPSP) that was completely blocked in ryanodine. These results demonstrate the importance of [Ca2+]i and CICR in sensory processing in AH neurons. Activity-dependent CICR may be a mechanism to grade the output of AH neurons according to the intensity of sensory input.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3