Role of Potassium Conductances in Determining Input Resistance of Developing Brain Stem Motoneurons

Author:

Cameron William E.123,Núñez-Abades Pedro A.1,Kerman Ilan A.1,Hodgson Tracy M.1

Affiliation:

1. Department of Neuroscience and

2. Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; and

3. Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201

Abstract

The role of potassium conductances in determining input resistance was studied in 166 genioglossal (GG) motoneurons using sharp electrode recording in brain stem slices of the rats aged 5–7 days, 13–15 days, and 19–24 days postnatal ( P). A high magnesium (Mg2+; 6 mM) perfusate was used to block calcium-mediated synaptic release while intracellular or extracellular cesium (Cs+) and/or extracellular tetraethylammonium (TEA) or barium (Ba2+) were used to block potassium conductances. In all cases, the addition of TEA to the high Mg2+ perfusate generated a larger increase in both input resistance ( R n) and the first membrane time constant (τ0) than did high Mg2+ alone indicating a substantial nonsynaptic contribution to input resistance. With intracellular injection of Cs+, GG motoneurons with lower resistance (<40 MΩ), on the average, showed a larger percent increase in R n than cells with higher resistance (>40 MΩ). There was also a significant increase in the effect of internal Cs+ on R n and τ0 with age. The largest percent increase (67%) in the τ0 due to intracellular Cs+ occurred at P13–15, a developmental stage characterized by a large reduction in specific membrane resistance. Addition of external Cs+blocked conductances (further increasing R n and τ0) beyond those blocked by the TEA perfusate. Substitution of external calcium with 2 mM barium chloride produced a significant increase in both R n and τ0at all ages studied. The addition of either intracellular Cs+ or extracellular Ba2+created a depolarization shift of the membrane potential. The amount of injected current required to maintain the membrane potential was negatively correlated with the control R n of the cell at most ages. Thus low resistance cells had, on the average, more Cs+- and Ba2+-sensitive channels than their high resistance counterparts. There was also a disproportionately larger percent increase in τ0 as compared with R n for both internal Cs+ and external Ba2+. Based on a model by Redman and colleagues, it might be suggested that the majority of these potassium conductances underlying membrane resistance are initially located in the distal dendrites but become more uniformly distributed over the motoneuron surface in the oldest animals.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3