Design of Ultrapotent Genetically Encoded inhibitors of Kv4.2 for Gating Neural Plasticity

Author:

Andreyanov Michael,Heinrich Ronit,Berlin Shai

Abstract

The Kv4.2 potassium channel plays established roles in neuronal excitability, while also being implicated in plasticity. Current means to study the roles of Kv4.2 are limited, motivating us to design a genetically encoded membrane tethered Heteropodatoxin-2 (MetaPoda). We find that MetaPoda is an ultrapotent and selective gating-modifier of Kv4.2. We narrow its site of contact with the channel to two adjacent residues within the voltage sensitive domain (VSD) and, with docking simulations, suggest that the toxin binds the VSD from within the membrane. We also show that MetaPoda does not require an external linker of the channel for its activity. In neurons (obtained from female and male rat neonates), MetaPoda specifically, and potently, inhibits all Kv4-currents, leaving all other A-type currents unaffected. Inhibition of Kv4 in hippocampal neurons does not promote excessive excitability, as is expected from a simple potassium channel blocker. We do find that MetaPoda's prolonged expression (1 week) increases expression levels of the immediate early gene cFos and prevents potentiation. These findings argue for a major role of Kv4.2 in facilitating plasticity of hippocampal neurons. Lastly, we show that our engineering strategy is suitable for the swift engineering of another potent Kv4.2-selective membrane-tethered toxin, Phrixotoxin-1 denoted MetaPhix. Together, we provide two uniquely potent genetic tools to study Kv4.2 in neuronal excitability and plasticity.Significance StatementInhibition of the Kv4.2 potassium channel in neurons via two unique and potent membrane tethered toxins reveals a major role for the channel in plasticity, without increasing neural excitability.

Funder

Templeton World Charity Foundation

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3