Functional Expression of L-, N-, P/Q-, and R-Type Calcium Channels in the Human NT2-N Cell Line

Author:

Neelands Torben R.1,King Anthony P. J.2,Macdonald Robert L.123

Affiliation:

1. Neuroscience Program,

2. Department of Neurology, and

3. Department of Physiology, University of Michigan, Ann Arbor, Michigan 48104-1687

Abstract

The biophysical and pharmacological properties of voltage-gated calcium channel currents in the human teratocarcinoma cell line NT2-N were studied using the whole cell patch-clamp technique. When held at −80 mV, barium currents ( I Bas) were evoked by voltage commands to above −35 mV that peaked at +5 mV. When holding potentials were reduced to −20 mV or 5 mM barium was substituted for 5 mM calcium, there was a reduction in peak currents and a right shift in the current-voltage curve. A steady-state inactivation curve for I Ba was fit with a Boltzmann curve ( V 1/2 = −43.3 mV; slope = −17.7 mV). Maximal current amplitude increased from 1-wk (232 pA) to 9-wk (1025 pA) postdifferentiation. Whole cell I Bas were partially blocked by specific channel blockers to a similar extent in 1- to 3-wk and 7- to 9-wk postdifferentiation NT2-N cells: 10 μM nifedipine (19 vs. 25%), 10 μM conotoxin GVIA (27 vs. 25%), 10 μM conotoxin MVIIC (15 vs. 16%), and 1.75 μM SNX-482 (31 vs. 33%). Currents were completely blocked by 300 μM cadmium. In the presence of nifedipine, GVIA, and MVIIC, ∼35% of current remained, which was reduced further by SNX-482 (7–14% of current remained), consistent with functional expression of L-, N-, and P/Q-calcium channel types and one or more R-type channel. The presence of multiple calcium currents in this human neuronal-type cell line provides a potentially useful model for study of the regulation, expression and cellular function of human derived calcium channel currents; in particular the R-type current(s).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3