Electrophysiological damage to neuronal membrane alters ephaptic entrainment

Author:

Cunha Gabriel Moreno,Corso Gilberto,Lima Marcelo M. S.,dos Santos Lima Gustavo Zampier

Abstract

AbstractThe brain is commonly understood as a complex network system with a particular organization and topology that can result in specific electrophysiological patterns. Among all the dynamic elements resulting from the circuits of the brain’s network, ephapticity is a cellular communication mechanism that has received little attention. To understand the network’s properties of ephaptic entrainment, we start investigating the ephaptic effect on a single neuron. In this study, we used numerical simulations to examine the relationship between alterations in ephaptic neuronal entrainment and impaired electrophysiological properties of the neuronal membrane, which can occur via spike field coherence (SFC). This change in frequency band amplitude is observed in some neurodegenerative diseases, such as Parkinson’s or Alzheimer’s. To further investigate these phenomena, we proposed a damaged model based on the impairment of both the resistance of the ion channels and the capacitance of the lipid membrane. Therefore, we simulated ephaptic entrainment with the hybrid neural model quadratic integrate-and-fire ephaptic (QIF-E), which mimics an ephaptic entrainment generated by an LFP (simulate a neuronal group). Our results indicate a link between peak entrainment (ephapticity) preference and a shift in frequency band when damage occurs mainly in ion channels. Finally, we discuss possible relationships between ephaptic entrainment and neurodegenerative diseases associated with aging factors.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3