The Neuromuscular Transform: The Dynamic, Nonlinear Link Between Motor Neuron Firing Patterns and Muscle Contraction in Rhythmic Behaviors

Author:

Brezina Vladimir1,Orekhova Irina V.1,Weiss Klaudiusz R.1

Affiliation:

1. Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029

Abstract

The nervous system issues motor commands to muscles to generate behavior. All such commands must, however, pass through a filter that we call here the neuromuscular transform (NMT). The NMT transforms patterns of motor neuron firing to muscle contractions. This work is motivated by the fact that the NMT is far from being a straightforward, transparent link between motor neuron and muscle. The NMT is a dynamic, nonlinear, and modifiable filter. Consequently motor neuron firing translates to muscle contraction in a complex way. This complexity must be taken into account by the nervous system when issuing its motor commands, as well as by us when assessing their significance. This is the first of three papers in which we consider the properties and the functional role of the NMT. Physiologically, the motor neuron–muscle link comprises multiple steps of presynaptic and postsynaptic Ca2+ elevation, transmitter release, and activation of the contractile machinery. The NMT formalizes all these into an overall input-output relation between patterns of motor neuron firing and shapes of muscle contractions. We develop here an analytic framework, essentially an elementary dynamical systems approach, with which we can study the global properties of the transformation. We analyze the principles that determine how different firing patterns are transformed to contractions, and different parameters of the former to parameters of the latter. The key properties of the NMT are its nonlinearity and its time dependence, relative to the time scale of the firing pattern. We then discuss issues of neuromuscular prediction, control, and coding. Does the firing pattern contain a code by means of which particular parameters of motor neuron firing control particular parameters of muscle contraction? What information must the motor neuron, and the nervous system generally, have about the periphery to be able to control it effectively? We focus here particularly on cyclical, rhythmic contractions which reveal the principles particularly clearly. Where possible, we illustrate the principles in an experimentally advantageous model system, the accessory radula closer (ARC)–opener neuromuscular system of Aplysia. In the following papers, we use the framework developed here to examine how the properties of the NMT govern functional performance in different rhythmic behaviors that the nervous system may command.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3