Innate Orientating Behavior of a Multi-Legged Robot Driven by the Neural Circuits of C. elegans

Author:

Hu Kangxin1,Zhang Yu2,Ding Fei1,Yang Dun1,Yu Yang1ORCID,Yu Ying1,Wang Qingyun1,Baoyin Hexi2

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Abstract

The objective of this research is to achieve biologically autonomous control by utilizing a whole-brain network model, drawing inspiration from biological neural networks to enhance the development of bionic intelligence. Here, we constructed a whole-brain neural network model of Caenorhabditis elegans (C. elegans), which characterizes the electrochemical processes at the level of the cellular synapses. The neural network simulation integrates computational programming and the visualization of the neurons and synapse connections of C. elegans, containing the specific controllable circuits and their dynamic characteristics. To illustrate the biological neural network (BNN)’s particular intelligent control capability, we introduced an innovative methodology for applying the BNN model to a 12-legged robot’s movement control. Two methods were designed, one involving orientation control and the other involving locomotion generation, to demonstrate the intelligent control performance of the BNN. Both the simulation and experimental results indicate that the robot exhibits more autonomy and a more intelligent movement performance under BNN control. The systematic approach of employing the whole-brain BNN for robot control provides biomimetic research with a framework that has been substantiated by innovative methodologies and validated through the observed positive outcomes. This method is established as follows: (1) two integrated dynamic models of the C. elegans’ whole-brain network and the robot moving dynamics are built, and all of the controllable circuits are discovered and verified; (2) real-time communication is achieved between the BNN model and the robot’s dynamical model, both in the simulation and the experiments, including applicable encoding and decoding algorithms, facilitating their collaborative operation; (3) the designed mechanisms using the BNN model to control the robot are shown to be effective through numerical and experimental tests, focusing on ‘foraging’ behavior control and locomotion control.

Funder

National Natural Science Foundation of China Grants

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3