Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer

Author:

Sellers Kristin K.12,Bennett Davis V.1,Hutt Axel3,Fröhlich Flavio12456

Affiliation:

1. Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;

2. Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;

3. Team Neurosys, Inria Research Centre Nancy-Grand Est, Villers-les-Nancy, France;

4. Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;

5. Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and

6. Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

Anesthesia is widely used in medicine and research to achieve altered states of consciousness and cognition. Whereas changes to macroscopic cortical activity patterns by anesthesia measured at the spatial resolution of electroencephalography have been widely studied, modulation of mesoscopic and microscopic network dynamics by anesthesia remain poorly understood. To address this gap in knowledge, we recorded spontaneous mesoscopic (local field potential) and microscopic (multiunit activity) network dynamics in primary visual cortex (V1) and prefrontal cortex (PFC) of awake and isoflurane anesthetized ferrets ( Mustela putoris furo). This approach allowed for examination of activity as a function of cortical area, cortical layer, and anesthetic depth with much higher spatial and temporal resolution than in previous studies. We hypothesized that a primary sensory area and an association cortical area would exhibit different patterns of network modulation by anesthesia due to their different functional roles. Indeed, we found effects specific to cortical area and cortical layer. V1 exhibited minimal changes in rhythmic structure with anesthesia but differential modulation of input layer IV. In contrast, anesthesia profoundly altered spectral power in PFC, with more uniform modulation across cortical layers. Our results demonstrate that anesthesia modulates spontaneous cortical activity in an area- and layer-specific manner. These finding provide the basis for 1) refining anesthesia monitoring algorithms, 2) reevaluating the large number of systems neuroscience studies performed in anesthetized animals, and 3) increasing our understanding of differential dynamics across cortical layers and areas.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3