Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis

Author:

Rimehaug Atle E.ORCID,Dale Anders M.,Arkhipov Anton,Einevoll Gaute T.

Abstract

AbstractThe local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.Author summaryTo make the best use of all the data collected in neuroscientific experiments, we need to develop appropriate analysis tools. In extracellular electrophysiological recordings, that is, measurements of electrical signals outside of cells produced by neural activity, the low-frequency part of the signal referred to as the local field potential (LFP) is often difficult to interpret due to the many neurons and biophysical processes contributing to this signal. Statistical tools have been used to decompose the recorded LFP with the aim of disentangling contributions from different neural populations and pathways. However, these methods are based on assumptions that can be invalid for LFP in the structure of interest. In this study, we extend and validate a method called laminar population analysis (LPA), which is based on physiological rather than statistical assumptions. We tested, developed, and validated LPA using simulated data from a large-scale, biophysically detailed model of mouse primary visual cortex. We found that LPA is able to tease apart several of the most salient contributions from different external inputs as well as the total contribution from recurrent activity within the primary visual cortex. We also demonstrate the application of LPA on experimentally recorded LFP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3