Ionic Basis of the Resting Membrane Potential and Action Potential in the Pharyngeal Muscle of Caenorhabditis elegans

Author:

Franks Christopher J.1,Pemberton Darrel1,Vinogradova Irina1,Cook Alan1,Walker Robert J.1,Holden-Dye Lindy1

Affiliation:

1. Centre for Neuroscience, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom

Abstract

The pharynx of C. elegans is a rhythmically active muscle that pumps bacteria into the gut of the nematode. This activity is maintained by action potentials, which qualitatively bear a resemblance to vertebrate cardiac action potentials. Here, the ionic basis of the resting membrane potential and pharyngeal action potential has been characterized using intracellular recording techniques. The resting membrane potential is largely determined by a K+permeability, and a ouabain-sensitive, electrogenic pump. As previously suggested, the action potential is at least partly dependent on voltage-gated Ca2+ channels, as the amplitude was increased as extracellular Ca2+ was increased, and decreased by L-type Ca2+ channel blockers verapamil and nifedipine. Barium caused a marked prolongation of action potential duration, suggesting that a calcium-activated K+ current may contribute to repolarization. Most notably, however, we found that action potentials were abolished in the absence of external Na+. This may be due, at least in part, to a Na+-dependent pacemaker potential. In addition, the persistence of action potentials in nominally free Ca2+, the inhibition by Na+ channel blockers procaine and quinidine, and the increase in action potential frequency caused by veratridine, a toxin that alters activation of voltage-gated Na+channels, point to the involvement of a voltage-gated Na+ current. Voltage-clamp analysis is required for detailed characterization of this current, and this is in progress. Nonetheless, these observations are quite surprising in view of the lack of any obvious candidate genes for voltage-gated Na+ channels in the C. elegans genome. It would therefore be informative to re-evaluate the data from these homology searches, with the aim of identifying the gene(s) conferring this Na+, quinidine, and veratridine sensitivity to the pharynx.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3