Biophysical Modeling and Experimental Analysis of the Dynamics ofC. elegansBody-Wall Muscle Cells

Author:

Du Xuexing,Crodelle Jennifer,Barranca Victor J.,Li Songting,Shi Yunzhu,Gao ShangbangORCID,Zhou DouglasORCID

Abstract

AbstractThis study combines experimental techniques and mathematical modeling to investigate the dynamics ofC. elegansbody-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials. We develop Hodgkin-Huxley-based models for these channels and integrate them to capture the cells’ electrical activity. To ensure the model accurately reflects cellular responses under depolarizing currents, we develop a parallel simulation-based inference method for determining the model’s free parameters. This method performs rapid parallel sampling across high-dimensional parameter spaces, fitting the model to the responses of muscle cells to specific stimuli and yielding accurate parameter estimates. We validate our model by comparing its predictions against cellular responses to various current stimuli in experiments and show that our approach effectively determines suitable parameters for accurately modeling the dynamics in mutant cases. Additionally, we discover an optimal response frequency in body-wall muscle cells, which corresponds to a burst firing mode rather than regular firing mode. Our work provides the first experimentally constrained and biophysically detailed muscle cell model ofC. elegans, and our analytical framework combined with robust and efficient parametric estimation method can be extended to model construction in other species.Author summaryDespite the availability of many biophysical neuron models ofC. elegans, a biologically detailed model of its muscle cell remains lacking, which hampers an integrated understanding of the motion control process. We conduct voltage clamp and mutant experiments to identify ion channels that influence the dynamics of body-wall muscle cells. Using these data, we establish Hodgkin-Huxley-based models for these ion channels and integrate them to simulate the electrical activity of the muscle cells. To determine the free parameters of the model, we develop a simulation-based inference method with parallel sampling that aligns the model with the muscle cells’ responses to specific stimuli. Our method allows for swift parallel sampling of parameters in high dimensions, facilitating efficient and accurate parameter estimation. To validate the effectiveness of the determined parameters, we verify the cells’ responses under different current stimuli in wild type and mutant cases. Furthermore, we investigate the optimal response frequency of body-wall muscle cells and find that it exhibits a frequency consistent with burst firing mode rather than regular firing mode. Our research introduces the first experimentally validated and biophysically detailed model of muscle cells inC. elegans. Additionally, our modeling and simulation framework for efficient parametric estimation in high-dimensional dynamical systems can be extended to model constructions in other scenarios.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3