Dual Orexin Actions on Dorsal Raphe and Laterodorsal Tegmentum Neurons: Noisy Cation Current Activation and Selective Enhancement of Ca2+ Transients Mediated by L-Type Calcium Channels

Author:

Kohlmeier K. A.,Watanabe S.,Tyler C. J.,Burlet S.,Leonard C. S.

Abstract

The hypocretin/orexins (Hcrt/Orxs) are hypothalamic neuropeptides that regulate stress, addiction, feeding, and arousal behaviors. They depolarize many types of central neurons and can increase [Ca2+]i in some, including those of the dorsal raphe (DR) and laterodorsal tegmental (LDT) nuclei—two structures likely to contribute to the behavioral actions of Hcrt/Orx. In this study, we used simultaneous whole cell and Ca2+-imaging methods in mouse brain slices to compare the Hcrt/Orx-activated current in DR and LDT neurons and to determine whether it contributes to the Ca2+ influx evoked by Hcrt/Orx. We found Hcrt/Orx activates a similar noisy cation current that reversed near 0 mV in both cell types. Contrary to our expectation, this current did not contribute to the somatic Ca2+ influx evoked by Hcrt/Orx. In contrast, Hcrt/Orx enhanced the Ca2+ transients produced by voltage steps (−60 to −30 mV) by ∼30% even in neurons lacking an inward current. This effect was abolished by nifedipine, augmented by Bay-K and abolished by bisindolylmaleimide I. Thus Hcrt/Orx has two independent actions: activation of noisy cation channels that generate depolarization and activation of a protein kinase C (PKC)-dependent enhancement of Ca2+ transients mediated by L-type Ca2+ channels. Immunocytochemistry verified that both these actions occurred in serotonergic and cholinergic neurons, indicating that Hcrt/Orx can function as a neuromodulator in these key neurons of the reticular activating system. Because regulation of Ca2+ transients mediated by L-channels is often linked to the control of transcriptional signaling, our findings imply that Hcrt/Orxs may also function in the regulation of long-term homeostatic or trophic processes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3