Compensatory plasticity restores locomotion after chronic removal of descending projections

Author:

Harley Cynthia M.1,Reilly Melissa G.1,Stewart Christopher2,Schlegel Chantel1,Morley Emma1,Puhl Joshua G.3,Nagel Christian1,Crisp Kevin M.2,Mesce Karen A.13

Affiliation:

1. Department of Entomology, University of Minnesota, Saint Paul, Minnesota;

2. Department of Biology and Neuroscience Program, Saint Olaf College, Northfield, Minnesota

3. Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota; and

Abstract

Homeostatic plasticity is an important attribute of neurons and their networks, enabling functional recovery after perturbation. Furthermore, the directed nature of this plasticity may hold a key to the restoration of locomotion after spinal cord injury. Here we studied the recovery of crawling in the leech Hirudo verbana after descending cephalic fibers were surgically separated from crawl central pattern generators shown previously to be regulated by dopamine. We observed that immediately after nerve cord transection leeches were unable to crawl, but remarkably, after a day to weeks, animals began to show elements of crawling and intersegmental coordination. Over a similar time course, excessive swimming due to the loss of descending inhibition returned to control levels. Additionally, removal of the brain did not prevent crawl recovery, indicating that connectivity of severed descending neurons was not essential. After crawl recovery, a subset of animals received a second transection immediately below the anterior-most ganglion remaining. Similar to their initial transection, a loss of crawling with subsequent recovery was observed. These data, in recovered individuals, support the idea that compensatory plasticity directly below the site of injury is essential for the initiation and coordination of crawling. We maintain that the leech provides a valuable model to understand the neural mechanisms underlying locomotor recovery after injury because of its experimental accessibility, segmental organization, and dependence on higher-order control involved in the initiation, modulation, and coordination of locomotor behavior.

Funder

NSF

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3