ω-AgaIVA–Sensitive (P/Q-type) and –Resistant (R-type) High-Voltage–Activated Ba2+ Currents in Embryonic Cockroach Brain Neurons

Author:

Benquet Pascal1,Guen Janine Le1,Dayanithi Govindan2,Pichon Yves1,Tiaho François1

Affiliation:

1. Groupe de Neurobiologie, Equipe Canaux et Récepteurs Membranaires, UPRES-A Centre National de la Recherche Scientifique, Université de Rennes1, 35042 Rennes Cedex; and

2. Centre National de la Recherche Scientifique-UPR, Biologie des Neurones Endocrines, Centre CNRS-INSERM de Pharmacologie-Endocrinologie, 34090 Montpellier Cedex 5, France

Abstract

By means of the whole cell patch-clamp technique, the biophysical and pharmacological properties of voltage-dependent Ba2+ currents ( I Ba) were characterized in embryonic cockroach brain neurons in primary culture. I Ba was characterized by a threshold of approximately −30 mV, a maximum at ∼0 mV, and a reversal potential near +40 mV. Varying the holding potential from −100 to −40 mV did not modify these properties. The steady-state, voltage-dependent activation and inactivation properties of the current were determined by fitting the corresponding curves with the Boltzmann equation and yielded V 0.5 of −10 ± 2 (SE) mV and −30 ± 1 mV, respectively. I Ba was insensitive to the dihydropyridine (DHP) agonist BayK8644 (1 μM) and antagonist isradipine (10 μM) but was efficiently and reversibly blocked by the phenylalkylamine verapamil in a dose-dependent manner ( IC 50 = 170 μM). The toxin ω-CgTxGVIA (1 μM) had no significant effect on IBa. Micromolar doses of ω-CmTxMVIIC were needed to reduce the current amplitude significantly, and the effect was slow. At 1 μM, 38% of the peak current was blocked after 1 h. In contrast, IBa was potently and irreversibly blocked by nanomolar concentrations of ω-AgaTxIVA in ∼81% of the neurons. Approximately 20% of the current was unaffected after treatment of the neurons with high concentrations of the toxin (0.4–1 μM). The steady-state dose-response relationship was fitted with a Hill equation and yielded an IC 50 of 17 nM and a Hill coefficient ( n) of 0.6. A better fit was obtained with a combination of two Hill equations corresponding to specific ( IC 50 = 9 nM; n = 1) and nonspecific ( IC 50 = 900 nM; n = 1) ω-AgaTxIVA–sensitive components. In the remaining 19% of the neurons, concentrations ≥100 nM ω-AgaTxIVA had no visible effect on IBa. On the basis of these results, it is concluded that embryonic cockroach brain neurons in primary culture express at least two types of voltage-dependent, high-voltage–activated (HVA) calcium channels: a specific ω-AgaTxIVA–sensitive component and DHP-, ω-CgTxGVIA–, and ω-AgaTxIVA–resistant component related respectively to the P/Q- and R-type voltage-dependent calcium channels.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3