Protein phosphorylation maintains the normal function of cloned human Cav2.3 channels

Author:

Neumaier Felix1ORCID,Alpdogan Serdar1,Hescheler Jürgen1,Schneider Toni1ORCID

Affiliation:

1. Institute for Neurophysiology, University of Cologne, Cologne, Germany

Abstract

R-type currents mediated by native and recombinant Cav2.3 voltage-gated Ca2+ channels (VGCCs) exhibit facilitation (run-up) and subsequent decline (run-down) in whole-cell patch-clamp recordings. A better understanding of the two processes could provide insight into constitutive modulation of the channels in intact cells, but low expression levels and the need for pharmacological isolation have prevented investigations in native systems. Here, to circumvent these limitations, we use conventional and perforated-patch-clamp recordings in a recombinant expression system, which allows us to study the effects of cell dialysis in a reproducible manner. We show that the decline of currents carried by human Cav2.3+β3 channel subunits during run-down is related to adenosine triphosphate (ATP) depletion, which reduces the number of functional channels and leads to a progressive shift of voltage-dependent gating to more negative potentials. Both effects can be counteracted by hydrolysable ATP, whose protective action is almost completely prevented by inhibition of serine/threonine but not tyrosine or lipid kinases. Protein kinase inhibition also mimics the effects of run-down in intact cells, reduces the peak current density, and hyperpolarizes the voltage dependence of gating. Together, our findings indicate that ATP promotes phosphorylation of either the channel or an associated protein, whereas dephosphorylation during cell dialysis results in run-down. These data also distinguish the effects of ATP on Cav2.3 channels from those on other VGCCs because neither direct nucleotide binding nor PIP2 synthesis is required for protection from run-down. We conclude that protein phosphorylation is required for Cav2.3 channel function and could directly influence the normal features of current carried by these channels. Curiously, some of our findings also point to a role for leupeptin-sensitive proteases in run-up and possibly ATP protection from run-down. As such, the present study provides a reliable baseline for further studies on Cav2.3 channel regulation by protein kinases, phosphatases, and possibly proteases.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3