Mesial Motor Areas in Self-Initiated Versus Externally Triggered Movements Examined With fMRI: Effect of Movement Type and Rate

Author:

Deiber Marie-Pierre12,Honda Manabu1,Ibañez Vicente1,Sadato Norihiro13,Hallett Mark1

Affiliation:

1. Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1428;

2. Institut National de la Santé et de la Recherche Médicale, Centre d’Exploration et de Recherche Médicales par Emission de Positons, 69003 Lyon, France; and

3. Department of Radiology, Fukui Medical School, Shimoaizuki 23, Yoshida, Fukui, Japan

Abstract

Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. The human frontomesial cortex reportedly contains at least four cortical areas that are involved in motor control: the anterior supplementary motor area (pre-SMA), the posterior SMA (SMA proper, or SMA), and, in the anterior cingulate cortex, the rostral cingulate zone (RCZ) and the caudal cingulate zone (CCZ). We used functional magnetic resonance imaging (fMRI) to examine the role of each of these mesial motor areas in self-initiated and visually triggered movements. Healthy subjects performed self-initiated movements of the right fingers (self-initiated task, SI). Each movement elicited a visual signal that was recorded. The recorded sequence of visual signals was played back, and the subjects moved the right fingers in response to each signal (visually triggered task, VT). There were two types of movements: repetitive (fixed) or sequential (sequence), performed at two different rates: slow or fast. The four regions of interest (pre-SMA, SMA, RCZ, CCZ) were traced on a high-resolution MRI of each subject’s brain. Descriptive analysis, consisting of individual assessment of significant activation, revealed a bilateral activation in the four mesial structures for all movement conditions, but SI movements were more efficient than VT movements. The more complex and more rapid the movements, the smaller the difference in activation efficiency between the SI and the VT tasks, which indicated an additional processing role of the mesial motor areas involving both the type and rate of movements. Quantitative analysis was performed on the spatial extent of the area activated and the percentage of change in signal amplitude. In the pre-SMA, activation was more extensive for SI than for VT movements, and for fast than for slow movements; the extent of activation was larger in the ipsilateral pre-SMA. In the SMA, the difference was not significant in the extent and magnitude of activation between SI and VT movements, but activation was more extensive for sequential than for fixed movements. In the RCZ and CCZ, both the extent and magnitude of activation were larger for SI than for VT movements. In the CCZ, both indices of activation were also larger for sequential than for fixed movements, and for fast than for slow movements. These data suggest functional specificities of the frontomesial motor areas with respect not only to the mode of movement initiation (self-initiated or externally triggered) but also to the movement type and rate.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3