Dissociation of novel open loop from ventral putamen to motor areas from classic closed loop in humans II: task-based function

Author:

Dundon Neil M.ORCID,Rizor ElizabethORCID,Stasiak JoanneORCID,Wang JingyiORCID,Sabugo Kiana,Villaneuva Christina,Barandon Parker,Bostan Andreea C.ORCID,Lapate Regina C.ORCID,Grafton Scott T.ORCID

Abstract

AbstractHumans ubiquitously increase the speed of their movements when motivated by incentives (i.e., capturing reward or avoiding loss). The complex interplay between incentivization and motor output is pertinent for unpacking the functional profiles of different circuits that link the basal ganglia with motor cortical areas. Here, we analyzed the functional profile of nodes forming two circuits involving putamen and motor cortical areas: the traditional “closed-loop circuit” (CLC) from sensorimotor dorsal putamen (PUTd) and a putative “open-loop circuit” (OLC) from ventral putamen (PUTv). Establishing differential function between CLC and OLC is particularly relevant for therapeutic approaches to Parkinson’s disease, where OLC function is hypothesized to be relatively spared by the disease process. In a large sample fMRI study, 68 healthy controls executed speeded reaches with a joystick under different levels of incentivization to accurately hit precision targets. We dissociated effects of “incentive per se” (i.e., changes in brain activity when an upcoming movement obtains a reward or avoids a loss) from “RT effects” (i.e., brain activity that directly scales with adjustments to movement initiation time). Incentive per se was observed across sites in both CLC and OLC. However, RT effects were primarily in nodes of the OLC and motor sites, consistent with the hypothesized anatomy and function of OLC. Our findings additionally suggest valence might mediate when incentives recruit OLC to more prominent control of motor behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3