Encoding and Retrieval in the CA3 Region of the Hippocampus: A Model of Theta-Phase Separation

Author:

Kunec Steve,Hasselmo Michael E.,Kopell Nancy

Abstract

Past research conducted by Hasselmo et al. in 2002 suggests that some fundamental tasks are better accomplished if memories are encoded and recovered during different parts of the theta cycle. A model of the CA3 subfield of the hippocampus is presented, using biophysical representations of the major cell types including pyramidal cells and two types of interneurons. Inputs to the network come from the septum and the entorhinal cortex (directly and by the dentate gyrus). A mechanism for parsing the theta rhythm into two epochs is proposed and simulated: in the first half, the strong, proximal input from the dentate to a subset of CA3 pyramidal cells and coincident, direct input from the entorhinal cortex to other pyramidal cells creates an environment for strengthening synapses between cells, thus encoding information. During the second half of theta, cueing signals from the entorhinal cortex, by the dentate, activate previously strengthened synapses, retrieving memories. Slow inhibitory neurons (O-LM cells) play a role in the disambiguation during retrieval. We compare and contrast our computational results with existing experimental data and other contemporary models.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3