Disrupted hippocampal synchrony following maternal immune activation in a rat model

Author:

Munn Robert G. K.1ORCID,Wolff Amy2,Speers Lucinda J.3,Bilkey David K.3

Affiliation:

1. Department of Anatomy University of Otago Dunedin New Zealand

2. Department of Neuroscience and Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA

3. Department of Psychology University of Otago Dunedin New Zealand

Abstract

AbstractMaternal immune activation (MIA) is a risk factor for schizophrenia and other neurodevelopmental disorders. MIA in rats models a number of the brain and behavioral changes that are observed in schizophrenia, including impaired memory. Recent studies in the MIA model have shown that the firing of the hippocampal place cells that are involved in memory processes appear relatively normal, but with abnormalities in the temporal ordering of firing. In this study, we re‐analyzed data from prior hippocampal electrophysiological recordings of MIA and control animals to determine whether temporal dysfunction was evident. We find that there is a decreased ratio of slow to fast gamma power, resulting from an increase in fast gamma power and a tendency toward reduced slow gamma power in MIA rats. Moreover, we observe a robust reduction in spectral coherence between hippocampal theta and both fast and slow gamma rhythms, as well as changes in the phase of theta at which fast gamma occurs. We also find the phasic organization of place cell phase precession on the theta wave to be abnormal in MIA rats. Lastly, we observe that the local field potential of MIA rats contains more frequent sharp‐wave ripple events, and that place cells were more likely to fire spikes during ripples in these animals than control. These findings provide further evidence of desynchrony in MIA animals and may point to circuit‐level changes that underlie failures to integrate and encode information in schizophrenia.

Funder

Health Research Council of New Zealand

Publisher

Wiley

Subject

Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3