Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running

Author:

Flück Martin1,Waxham M. Neal2,Hamilton Marc T.13,Booth Frank W.1

Affiliation:

1. Departments of Integrative Biology and Pharmacology and of

2. Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030; and

3. Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65211-0001

Abstract

Spikes in free Ca2+ initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca2+/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca2+, we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca2+-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca2+/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca2+-independent and Ca2+/CaM-dependent forms of Ca2+/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca2+-independent form of CaMKII was increased, like the Ca2+-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca2+-independent SRF kinase was increased, no alteration occurred in Ca2+/CaM-dependent SRF kinase activity. Thus any role of Ca2+-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3