Development of the ventilatory response to hypoxia in Swiss CD-1 mice

Author:

Robinson Dean M.1,Kwok Henry1,Adams Brandon M.1,Peebles Karen C.1,Funk Gregory D.1

Affiliation:

1. Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand

Abstract

We examined developmental changes in breathing pattern and the ventilatory response to hypoxia (7.4% O2) in unanesthetized Swiss CD-1 mice ranging in age from postnatal day 0 to 42(P0–P42) using head-out plethysmography. The breathing pattern of P0 mice was unstable. Apneas were frequent at P0 (occupying 29 ± 6% of total time) but rare by P3 (5 ± 2% of total time). Tidal volume increased in proportion to body mass (∼10–13 ml/kg), but increases in respiratory frequency (f) (55 ± 7, 130 ± 13, and 207 ± 20 cycles/min for P0, P3, and P42, respectively) were responsible for developmental increases in minute ventilation (690 ± 90, 1,530 ± 250, and 2,170 ± 430 ml ⋅ min 1 ⋅ kg 1for P0, P3, and P42, respectively). Between P0 and P3, increases in f were mediated by reductions in apnea and inspiratory and expiratory times; beyond P3, increases were due to reductions in expiratory time. Mice of all ages showed a biphasic hypoxic ventilatory response, which differed in two respects from the response typical of most mammals. First, the initial hyperpnea, which was greatest in mature animals, decreased developmentally from a maximum, relative to control, of 2.58 ± 0.29 in P0 mice to 1.32 ± 0.09 in P42mice. Second, whereas ventilation typically falls to or below control in most neonatal mammals, ventilation remained elevated relative to control throughout the hypoxic exposure in P0 (1.73 ± 0.31), P3 (1.64 ± 0.29), and P9 (1.34 ± 0.17) mice but not in P19 or P42 mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3