Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices

Author:

Diessel E.1,Fuerst T.12,Njeh C. F.1,Tylavsky F.3,Cauley J.4,Dockrell M.1,Genant H. K.1

Affiliation:

1. University of California San Francisco, San Francisco 94143-1349;

2. Synarc, Inc., San Francisco, California 94105;

3. University of Tennessee, Memphis, Tennessee 38103-4900; and

4. University of Pittsburgh, Pittsburgh, Pennsylvania 15238-2887

Abstract

This study evaluated a new body composition phantom and its use for quality control and cross-calibration of dual-energy X-ray absorptiometry (DXA) instruments for measurements of body composition. We imaged the variable composition phantom (Lunar, Madison, WI) on eight different DXA devices. Deviations of up to 7% fat were observed when we compared the percent fat values measured by the different devices with the nominal values provided by the manufacturer. Absolute precision error of percent fat measurements for the phantom ranged from 0.6 to 0.8%. The phantom's percent fat values were also compared with whole body composition measurements from 130 female and male volunteers. The phantom detected differences in percent fat values that were similar to those found by comparing in vivo measurements with values from different DXA scanner models from the same manufacturer. When comparing different models of scanners from different manufacturers, such as the Hologic QDR-4500 and the Lunar DPX-IQ, the phantom showed a different relationship than was seen for patients. Therefore, corrections or comparisons based on the phantom data alone would be incorrect. In conclusion, the Lunar variable composition phantom is capable of accurately measuring the fat calibration of DXA devices and may be suitable for cross-sectional cross-calibration between scanners from the same manufacturer; however, for comparison of DXA scanners from different manufacturers, in vivo cross-calibration is still the only accurate method. The phantom may be used in longitudinal quality control to verify an instrument's temporal stability.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3