Neural and muscular determinants of maximal rate of force development

Author:

Dideriksen Jakob L.1ORCID,Del Vecchio Alessandro2,Farina Dario2ORCID

Affiliation:

1. Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

2. Department of Bioengineering, Imperial College London, London, United Kingdom

Abstract

The ability to produce rapid forces requires quick motor unit recruitment, high motor unit discharge rates, and fast motor unit force twitches. The relative importance of these parameters for maximum rate of force development (RFD), however, is poorly understood. In this study, we systematically investigated these relationships using a computational model of motor unit pool activity and force. Across simulations, neural and muscular properties were systematically varied in experimentally observed ranges. Motor units were recruited over an interval starting from contraction onset (range: 22–233 ms). Upon recruitment, discharge rates declined from an initial rate (range: 89–212 pulses per second), with varying likelihood of doublet (interspike interval of 3 ms; range: 0–50%). Finally, muscular adaptations were modeled by changing average twitch contraction time (range: 42–78 ms). Spectral analysis showed that the effective neural drive to the simulated muscle had smaller bandwidths than the average motor unit twitch, indicating that the bandwidth of the motor output, and thus the capacity for explosive force, was limited mainly by neural properties. The simulated RFD increased by 1,050 ± 281% maximal voluntary contraction force per second from the longest to the shortest recruitment interval. This effect was more than fourfold higher than the effect of increasing the initial discharge rate, more than fivefold higher than the effect of increasing the chance of doublets, and more than sixfold higher than the effect of decreasing twitch contraction times. The simulated results suggest that the physiological variation of the rate by which motor units are recruited during ballistic contractions is the main determinant for the variability in RFD across individuals. NEW & NOTEWORTHY An important limitation of human performance is the ability to generate explosive movements by means of rapid development of muscle force. The physiological determinants of this ability, however, are poorly understood. In this study, we show using extensive simulations that the rate by which motor units are recruited is the main limiting factor for maximum rate of force development.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3