Affiliation:
1. Aix Marseille University, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France
2. Department of Physiology, University of Gothenburg, Gothenburg, Sweden
Abstract
The technique of microneurography—recording neural traffic from nerves in awake humans—has provided us with unrivaled insights into afferent and efferent processes in the peripheral nervous system for over 50 years. We review the use of microneurography to study single C-fiber afferents and provide an overview of the knowledge gained, with views to future investigations. C-fibers have slowly conducting, thin-diameter, unmyelinated axons and make up the majority of the fibers in peripheral nerves (~80%). With the use of microneurography in humans, C-fiber afferents have been differentiated into discrete subclasses that encode specific qualities of stimuli on the skin, and their functional roles have been investigated. Afferent somatosensory information provided by C-fibers underpins various positive and negative affective sensations from the periphery, including mechanical, thermal, and chemical pain (C-nociceptors), temperature (C-thermoreceptors), and positive affective aspects of touch (C-tactile afferents). Insights from microneurographic investigations have revealed the complexity of the C-fiber system, methods for delineating fundamental C-fiber populations in a translational manner, how C-fiber firing can be used to identify nerve deficits in pathological states, and how the responses from C-fibers may be modified to change sensory percepts, including decreasing pain. Understanding these processes may lead to future medical interventions to diagnose and treat C-fiber dysfunction. NEW & NOTEWORTHY The technique of microneurography allows us to directly investigate the functional roles of single C-fiber afferents in awake human beings. Here we outline and discuss the current field of C-fiber research on this heterogeneous population of afferents in healthy subjects, in pathological states, and from a translational perspective. We cover C-fibers encoding touch, temperature, and pain and provide perspectives on the future of C-fiber microneurography investigations in humans.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献