Affiliation:
1. Aix Marseille Université, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives – UMR 7260), Marseille, France
2. Department of Physiology, University of Gothenburg, Gothenburg, Sweden
3. Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
Abstract
C-tactile (CT) afferents respond to gentle tactile stimulation, but only a handful of studies in humans and animals have investigated whether their firing is modified by temperature. We describe the effects of radiant thermal stimuli, and of stationary and very slowly moving mechanothermal stimuli, on CT afferent responses. We find that CT afferents are primarily mechanoreceptors, as they fired little during radiant thermal stimuli, but they exhibited different patterns of firing during combined mechano-cool stimulation compared with warming. CTs fired optimally to gentle, very slowly moving, or stationary mechanothermal stimuli delivered at neutral temperature (~32°C, normal skin temperature), but they responded with fewer spikes (median 67% decrease) and at significantly lower rates (47% decrease) during warm (~42°C) tactile stimuli. During cool tactile stimuli (~18°C), their mean instantaneous firing frequency significantly decreased by 35%, but they often fired a barrage of afterdischarge spikes at a low frequency (~5 Hz) that outlasted the mechanical stimulus. These effects were observed under a variety of stimulus conditions, including during stationary and slowly moving touch (0.1 cm/s), and we complemented these tactile approaches using a combined electrical-thermal stimulation experiment where we found a suppression of spiking during warming. Overall, CT afferents are exquisitely sensitive to tactile events, and we show that their firing is modulated with touch temperatures above and below neutral skin temperature. Warm touch consistently decreased their propensity to fire, whereas cool touch produced lower firing rates but afterdischarge spiking. NEW & NOTEWORTHY C-tactile (CT) afferents are thought to underpin pleasant touch, and previous work has shown that they respond optimally to a slow caress delivered at typical (neutral) skin temperature. Here, we show that, although CTs are primarily mechanoreceptive afferents, they are modified by temperature: warm touch decreases their firing, whereas cool touch produces lower firing rates but long-lasting spiking, frequently seen as afterdischarges. This has implications for the encoding of affective sensory events in human skin.
Funder
Swedish Research Council
Sahlgrenska University Hospital
Wenner-Gren Foundation
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献