Temporal Features of Spectral Integration in the Inferior Colliculus: Effects of Stimulus Duration and Rise Time

Author:

Gans Donald,Sheykholeslami Kianoush,Peterson Diana Coomes,Wenstrup Jeffrey

Abstract

This report examines temporal features of facilitation and suppression that underlie spectrally integrative responses to complex vocal signals. Auditory responses were recorded from 160 neurons in the inferior colliculus (IC) of awake mustached bats. Sixty-two neurons showed combination-sensitive facilitation: responses to best frequency (BF) signals were facilitated by well-timed signals at least an octave lower in frequency, in the range 16–31 kHz. Temporal features and strength of facilitation were generally unaffected by changes in duration of facilitating signals from 4 to 31 ms. Changes in stimulus rise time from 0.5 to 5.0 ms had little effect on facilitatory strength. These results suggest that low frequency facilitating inputs to high BF neurons have phasic-on temporal patterns and are responsive to stimulus rise times over the tested range. We also recorded from 98 neurons showing low-frequency (11–32 kHz) suppression of higher BF responses. Effects of changing duration were related to the frequency of suppressive signals. Signals <23 kHz usually evoked suppression sustained throughout signal duration. This and other features of such suppression are consistent with a cochlear origin that results in masking of responses to higher, near-BF signal frequencies. Signals in the 23- to 30-kHz range—frequencies in the first sonar harmonic—generally evoked phasic suppression of BF responses. This may result from neural inhibitory interactions within and below IC. In many neurons, we observed two or more forms of the spectral interactions described here. Thus IC neurons display temporally and spectrally complex responses to sound that result from multiple spectral interactions at different levels of the ascending auditory pathway.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3